<<
>>

Временная иерархия на биологическом эволюционном уровне

266.

267. Вирус как пространственно не локализованная живая система

Используя представление о распределенных во времени системах, можно попытаться сформулировать ответ на вопрос: является ли живым вирус? Оставаясь в рамках анализа пространственных систем, мы должны были рассуждать об отнесении к живым или неживим такого объекта, как окруженная белковой оболочкой молекула ДНК (или РНК).

Хотя понятно, что как системно определенный, обладающий конкретными системными качествами, вирус не может быть представлен как сугубо локальный пространственный феномен, то есть как статическая система. Вирус — это циклическая последовательность состояний молекулярной системы. Однако, в отличие от «настоящих» биологических организмов, полный цикл «функционирования» вируса не может быть представлен как непрерывный процесс, как временно и пространственно определенная динамическая система. В терминологии временной классификации вирус можно рассматривать как распределенную во времени стационарную систему с неопределенными временными промежутками между конкретно выделенными состояниями.

Можно сказать, что вирус — это живая временно-распределенная, но пространственно не локализованная стационарная система. Под отсутствием пространственной локализации понимается, что вирус как биолого-системный феномен (в отличие от живой клетки) не может быть представлен как единичный пространственный объект на протяжении всего цикла своего функционирования.

268. Живая клетка как пространственная локализация функциональной

системы

Основываясь на анализе отличия вируса от живой клетки, а также феномена новационного формирования многоклеточного организма (сужд. 224), можно высказать простой по форме и содержанию тезис: эволюционное движение Мира идет в направлении пространственной локализации распределенных во времени систем.

В современной научной парадигме, основывающейся на представлениях пространственной системной иерархии, новационное образование живой клетки описывается как акт случайного объединения пространственно распределенных элементов. Однако, повторяя логическую схему, примененную при анализе формирования многоклеточного организма, следует предположить, что появлению живой клетки должно предшествовать существование распределенной во времени системы, последовательно реализующей основные клеточные процессы. Тогда образование живой клетки можно описать как локальную реализацию в виде пространственного объекта ранее рассредоточенных во времени и пространстве автокаталитических циклов синтеза органических полимеров. Тут же следует заметить, что представление о необходимости предварительной реализации рассредоточенных клеточных процессов соответствует высказанному в первой части книги (сужд. 24) предположению о существовании самостоятельного, отличного от химического и биологического, протобиологического эволюционного уровня.

Итак, живая клетка может рассматриваться как реализация в виде локализованного пространственного феномена некой функциональной системы, образованной совокупностью процессов синтеза органических полимеров. Согласно развиваемому формализму временно- рассредоточенных систем, можно предположить, что протобиологические (доклеточные) функциональные системы формировались как согласованные параллельные реакции синтеза полимеров, результатом которых (результатом функциональной системы) являлась некая молекулярная структура. Эту структуру нельзя рассматривать как непосредственный катализатор отдельных химических реакций, составляющих функциональную систему. В ней фиксировалось процессуальное содержание системы, и как таковая она становилась основой для дублирования функциональных систем. То есть ДНК, которая на химическом (процессуальном) уровне не является катализатором, можно рассматривать как «катализатор», стыкующий результат и начало последовательности функциональных системы.

Таким образом выстраивались «автокаталитические» цепочки функциональных систем, воспроизводящие структуру ДНК как свой результат и как основу (отправную точку) для начала новых систем.

На определенном этапе усложнения ДНК и зацикливания на ней нескольких функциональных систем произошла инверсия: воспроизводство результата, то есть структуры, фиксирующей

функциональную систему, предстало как воспроизводство самой системы уже в качестве пространственно-локализованного феномена — клетки. (Похожий сценарий формирования системной новации был отмечен в предыдущей части книги, когда самовоспроизводство клеток половой линии стало внешне восприниматься как воспроизводство организмов. Аналогично, экономика, изначально возникшая как средство поддержания жизнедеятельности биологических организмов, стала самовоспроизводящейся основой социосистемы.)

269. Биологическая эволюция в терминах временной иерархии

И опять, на новом уровне рассмотрения, мы можем выразить содержание предложенных в предыдущей части книги концепций уровневого отбора и новационного системогенеза в биологической эволюции (см. сужд. 219 о инволюционно-деволюционной природе концепций).

Иерархия выделенных уровней отбора (генетический, онтогенетический, психический), как уже отмечалось (сужд. 164), является не пространственной (структурной), а функциональной, то есть временной. Поведенческий уровень соответствует уровню функциональных систем (действий), онтогенетический — динамических, генетический — уровню элементарных структур. Следовательно, в терминологии временной иерархии систем механизм опускания адаптивной новации в геном (сужд. 167) описывается как поэтапная фиксация временно-распределенного содержания систем высших уровней в низших: функциональных поведенческих систем — в динамических (в онтогенезе) и, в конечном итоге, в статических (в ДНК). И, соответственно, воспроизводство биологического организма как локального пространственно-временного феномена реализуется построением временно-распределенных систем (функциональных и динамических) на основе потока элементарных переходов (органического синтеза) и отображения этих систем в плоскости пространственной иерархии.

В этой логике удлинение срока жизнедеятельности и дополового созревания организмов (сужд. 173) можно рассматривать как необходимое увеличение временного отрезка, на котором пространственно локализуются распределенные во времени системы достаточного уровня сложности.

Акт новационного системогенеза (сужд. 180) представляется как спонтанное формирование новых динамических и функциональных систем на основе постоянно модифицируемого потока элементарных переходов — потока структур ДНК, интегрально фиксирующих движение эволюционной системы.

Безусловно, оба описанных процесса — фиксация новаций в статичных структурах и формирование новых пространственных отображений временно-распределенных систем — являются взаимодополняющими, взаимообуславливающими, что, по сути, соответствует тезису о встречном движении системной и адаптивных новаций в онтогенезе (сужд. 181).

270. Реализация адаптивного многообразия в нейронных системах

В терминах формализма распределенных во времени систем процесс адаптации колонии одноклеточных практически аналогичен акту адаптации высших организмов. В обоих случаях адаптация реализуется как результат селекции клеток с различным генетическим материалом. Существенная разница лишь в пространственно-временном распределении адаптирующейся системы. В колонии одноклеточных происходит последовательная во времени селекция — адаптирующаяся система распределена во времени на период, равный жизни многих поколений. В нервной системе высших организмов происходит селекция из локализованной в пространстве и во времени группы клеток (нейронов). Приспособительный результат достигается не через поколения, а путем формирования функциональной системы на промежутках времени значительно короче жизни особи.

Специфичность нейронов в их универсальности с сохранением возможности специализации. Универсальность, то есть не подавление генетического материала до уровня узкой функциональности, свойственной клеткам других органов, позволяет нейронам максимально разнообразно использовать генофонд. И это разнообразие обеспечивается именно возможностью временной специализации нервных клеток, то есть наличием вариаций в экспрессии генов.

<< | >>
Источник: Болдачев Александр Владимирович. Суждения в русле эволюционной парадигмы . 2007

Еще по теме Временная иерархия на биологическом эволюционном уровне:

  1. § 3. Специфика временной организации биологических процессов и характер взаимосвязи биологического и физического времени.
  2. Уровни мировой иерархии
  3. Мировая иерархия Эволюционная иерархическая классификация
  4. Философские суждения в русле эволюционно-новационной биологической парадигмы
  5. Временная иерархия систем
  6. Логика эволюции в терминах временной иерархии систем
  7. Гл. 2. Природа равномерности и специфика физического и биологического времени
  8. Чем выше по уровню совершенства находится то или иное общество, тем ниже темпы его биологического размножения.
  9. Нарушение биологического равновесия и биологического круговорота веществ
  10. Начало и финал мира в эволюционной парадигме Эволюционные проблемы современной научной картины Мира
  11. Глава 22 Дление времени. Чувство времени. Сознание времени
  12. ! Задание 5.3. Составьте схему уровней социальной политики и факторов, действующих на каждом уровне.