<<
>>

14.3. Модели дискретных каналов

Дискретными называются каналы, входные и выходные сигналы которых принимают конечное число мгновенных значений. Понятие дискретного канала естественно возникает при передаче дискретных сообщений и определяется как совокупность технических средств, включенных между кодером и декодером канала (рис.

14.1).

Переход от дискретных сигналов к непрерывным осуществляется на передающей стороне при манипуляции параметрами непрерывной несущей. На приемной стороне дискретные сигналы появляются на выходе первой решающей схемы (демодулятора).

Свойства дискретного канала определяются непрерывным каналом и структурой модема. Дискретный канал задается множеством входных {si}, и выходных {yj}, символов (сигналов), длительностью символов τ и условными вероятностями P(yj/si) преобразования входных символов в выходные. Обычно длительности всех входных и выходных символов одинаковы. Объемы алфавитов входных Ls и выходных Ly сигналов в общем случае могут быть разными, причем Ly ≥ Ls. Однако в большинстве случаев Ly = Ls. Для дискретных каналов широко используется представление принятой последовательности символов Y = (y1, y2,..., yn) в виде суммы переданной последовательности S = (s1, s2,..., sn) и комбинации помехи (вектора ошибки) E = (e1, e2,..., en)

,

где – понимается как поразрядное сложение S и E по модулю Ls. В случае двоичных последовательностей (Ls = 2) нулевой символ вектора ошибки ei = 0 означает, что i-й символ принят правильно (yi = si), а ei = 1 указывает на ошибку в приёме (yi ≠ si).

Классификацию дискретных каналов удобно вести по вектору ошибки Е. Разные модели каналов различаются распределением вероятностей вектора Е. Наиболее распространены следующие модели [2].

Канал без памяти – это канал, в котором символы ei являются независимыми СВ. Прием каждого сигнального символа в таком канале не зависит от результата приема предыдущих символов. При наличии такой зависимости имеет место канал с памятью. Дискретный канал называется стационарным, если вероятность ошибочного приема символов не изменяется с течением времени.

В силу простоты технической реализации наибольшее применение находят каналы, сигналы в которых представляются двоичным кодом. Такие каналы называются двоичными (бинарными) и задаются с помощью графа (рис. 14.2). Вероятности P(0/0) и P(1/1) характеризуют правильный прием символов 0 и 1 соответственно, a P(1/0) и P(0/1) – вероятности ошибок при приеме символов 0 и 1.

Симметричным двоичным называется канал, в котором вероятности ошибок при приеме 0 и 1 одинаковы, P(1/0) = P(0/1), а следовательно, равны и вероятности правильного приема символов P(0/0) = P(1/1) = 1 - p.

Для симметричного стационарного канала без памяти вероятность искажения i-го символа P(ei = 1) = p, а вероятность правильного приема P(ei = 0) = 1 – p.

Рис. 14.2. Граф двоичного канала

Двоичный канал без памяти со стиранием отличается от рассмотренного тем, что выходной алфавит помимо 0 и 1 содержит третий символ «?» – символ стирания. Он появляется в тех случаях, когда демодулятор не может надежно опознать переданный символ. Такой канал часто используется в системах передачи информации с обратной связью, когда при приеме символа «?» производится повторение передачи. Это позволяет значительно снизить вероятность ошибочного приема за счет уменьшения скорости передачи.

Марковский канал является простейшей моделью дискретного канала с памятью. Он характеризуется вектором ошибки, символы которого образуют простую цепь Маркова [12]. Вероятность искажения символа в этом канале зависит от результата приема только предыдущего символа.

Марковская модель задается матрицей переходных вероятностей:

,

где p1 – условная вероятность принять (i + 1)-й символ ошибочно, если i-й принят правильно; 1- p1 – условная вероятность принять (i + 1)-й символ правильно, если i-й принят правильно; p2 – условная вероятность принять (i + 1)-й символ ошибочно, если i-й принят ошибочно; 1- p2 – условная вероятность принять (i + 1)-й символ правильно, если i-й принят ошибочно.

Безусловная (средняя) вероятность ошибки в рассматриваемом канале должна удовлетворять уравнению:

p(xi+1 / xi) = p2 ∙ pош(xi) + p1 ∙ pправ(xi)

или

p(xi+1 / xi) = p1 / (1 + p1 + p2).

Данная модель имеет достоинство – простоту использования, но не всегда адекватно воспроизводит свойства реальных каналов. Большую точность позволяет получить модель Гильберта для дискретного канала с памятью. В такой модели канал может находиться в двух состояниях S1 и S2. В состоянии S1 ошибок не происходит; в состоянии S2 ошибки возникают с вероятностью p2.

Также считаются известными вероятности перехода p(S1 / S2) из состояния S1 в S2 и вероятности перехода p(S2 / S1) из состояния S2 в состояние S1. В этом случае простую марковскую цепь образует не последовательность ошибок, а последовательность переходов:

,

При этом достаточно легко выразить безусловные вероятности нахождения канала в состояниях S1 и S2:

, ,

Безусловная вероятность ошибки в этом случае может быть определена по формуле:

.

Наиболее часто при использовании модели Гильберта для двоичного канала полагают p2 = 1/2, т.е. состояние S2 рассматривается как полный обрыв связи. Это согласуется с представлением о канале, в котором действуют коммутационные помехи.

Из других моделей симметричных двоичных каналов следует отметить канал с пакетами ошибок, который характеризуется тем, что искажающие символы (единицы) вектора ошибки группируются в пакеты. Такое группирование происходит, если в непрерывном канале, входящем в дискретный, действуют сильные замирания сигналов на время длительности нескольких символов или присутствуют импульсные помехи большой длительности. Подобные каналы задаются вероятностями искажений серий из q символов подряд.

<< | >>
Источник: Павликов С. Н., Убанкин Е. И., Левашов Ю.А.. Общая теория связи. [Текст]: учеб. пособие для вузов – Владивосток: ВГУЭС,2016. – 288 с.. 2016
Помощь с написанием учебных работ

Еще по теме 14.3. Модели дискретных каналов:

  1. 15.1. Количество информации переданной по дискретному каналу
  2. 14.2. Модели непрерывных каналов
  3. Вариации в пределах «канал мысли - канал не­посредственного чувства»
  4. 7.2. Автокорреляция дискретного сигнала
  5. 12.1. Алгоритмы дискретного и быстрого преобразований Фурье
  6. 15.3. Пропускная способность симметричного дискретного канала без памяти
  7. 12.2. Стационарные линейные дискретные цепи
  8. 15.4. Методы сжатия дискретных сообщений
  9. 15.2. Пропускная способность дискретного канала
  10. Моменты количества: дискретное и непрерывное
  11. § 3. Характер соотношения дискретности и непрерывности времени и проблема естественных единиц измерения длительности
  12. Характеристика каналов
  13. 22.7. Пропускная способность каналов радиотехнической системы связи
  14. 4.5. Модели рыночной экономики. Особенности белорусской экономической модели