<<
>>

2.2. Математическое представление сигналов

Многие задачи теории связи и радиотехники, например вычисление отклика физической системы на известное входное воздействие, требуют специфической формы представления сигналов.

Способ получения таких моделей сигналов состоит в следующем.

Реальный сигнал приближенно представляется суммой некоторых элементарных сигналов, возникающих в последовательные моменты времени. Если теперь устремить к нулю длительность отдельных элементарных сигналов, то, естественно, в пределе будет получено точное представление исходного сигнала. В литературе этот способ описания сигнала получил название динамического представления, подчеркивающее развивающийся во времени процесс.

Широкое применение нашли два способа динамического представления. Согласно первому из них в качестве элементарных сигналов используются ступенчатые функции, возникающие через равные промежутки времени ∆.

В качестве таких функций используются функции включения (рис. 2.3.) или функции Хевисайда σ(t), которые описываются следующим образом

Рис. 2.3. Функция включения

Другая возможность представления сигнала заключается в использовании стандартных прямоугольных функций длительностью ∆. На рис. 2.4 показаны возможные способы представления сигналов.

Рис. 2.4. Динамическое представление сигналов

Как видно (рис. 2.4а), текущее значение сигнала при любом t равно сумме ступенчатых функций

s(t) ≈ s0 σ(t) + (s1 - s0 )σ(t - Δ) + (s2 - s1 ) σ(t - 2Δ) + ··· (2.2)

В случае представления аналогового сигнала суммой примыкающих к друг другу прямоугольных импульсов, элементарный импульс с номером k представляется в виде

uk(t) = sk[σ(t - tk ) - σ(t - tk - Δ)]. (2.3)

Тогда исходный сигнал является суммой элементарных импульсов

. (2.4)

Важное значение при динамическом представлении сигнала играет и другая функция, которая называется дельта-функцией δ(t) или функцией Дирака. Такой функцией называется импульсный сигнал, площадь которого, например, Am ·τ равна 1, причем длительность импульса τ стремится к нулю, а амплитуда импульса Am стремится к бесконечности.

Если в выражении (2.4) Δ устремить к нулю, то получим формулу динамического представления сигнала

(2.5)

Таким образом, если непрерывную функцию умножить на дельта функцию и произведение проинтегрировать по времени, то результат будет равен значению функции в той точке, где существует δ-функция. В этом заключается фильтрующее свойство дельта-функции.

<< | >>
Источник: Павликов С. Н., Убанкин Е. И., Левашов Ю.А.. Общая теория связи. [Текст]: учеб. пособие для вузов – Владивосток: ВГУЭС,2016. – 288 с.. 2016
Помощь с написанием учебных работ

Еще по теме 2.2. Математическое представление сигналов:

  1. : от интуитивных представлений до математического описания
  2. 2.3. Геометрическое представление сигналов
  3. 3.2. Спектральное представление непериодических сигналов
  4. 2.4. Представление сигналов в виде рядов ортогональных функций
  5. 3.1. Спектральное представление периодических сигналов
  6. 6. Комплексное представление сигналов и помех
  7. 2.1. Математическое описание сигнала
  8. 4. Методы математической логики
  9. 1.5 Экономико-математические методы управления запасами
  10. § 2. ФИЗИКО-МАТЕМАТИЧЕСКИЕ МОДЕЛИ ВСЕЛЕННОЙ И РЕАЛЬНОСТЬ
  11. 2.5.4. Математическая астрономия и принцип спасения явлений
  12. Лекция 16. Математические основы дисциплины.
  13. Раньше всего выделились математические науки, непреложность и общеобязательность которых не вызывает сомнений.
  14. 4.1. Разложение непрерывных сигналов в ряд Котельникова
  15. 3. Деятельность человека в условиях потока сигналов